Full Monte™ — The better approach to Schedule Risk Analysis

Getting Started with Full Monte
Table of Contents

Chapter 1: Introduction 1
 1.1 Overview 1
 1.2 Prerequisites 1
 1.3 The Full Monte Demonstration Project 2
 1.4 Schedule Risk Assessment / Schedule Risk Analysis 4
 1.5 Three-Point Estimate Guidance 5

Chapter 2: Getting Started with Full Monte 6
 2.1 Opening a Project in Full Monte 6
 2.2 Field Mappings 7
 2.3 Task Hierarchy 12
 2.4 Entering Duration Uncertainty data 14
 2.5 Confidence Interval 14

Chapter 3: Performing a Risk Analysis and Viewing Results 16
 3.1 Running a Risk Analysis (Monte Carlo Simulation) 16
 3.2 Viewing Results 19

Chapter 4: Using Templates to apply Task Uncertainty 25
 4.1 Defining Template Uncertainty 25
 4.2 Applying Template Uncertainty by Selecting Tasks 25
 4.3 Applying Template Uncertainty using Custom Fields 30
 4.4 Running an Analysis based on Template Data 34

Chapter 5: Analyzing Results. 37
 5.1 Sensitivity Analysis 37
 5.2 Risk Path Analysis 38
 5.3 Custom Views in Microsoft Project 44

Summary 49
Most project management software products implement a technique called Critical Path Methodology (CPM). This includes popular tools such as Microsoft Project™, Oracle Primavera™, and Deltek Open Plan™. The problem with the Critical Path Methodology is that it gives users a single-point estimate of when projects will be complete. This single, deterministic, estimate will not only most likely be wrong but in fact tends to be overly optimistic, often resulting in projects being delivered late and over budget.

By including information related to estimate uncertainty and the potential impact of threats and opportunities, we can enhance the CPM model to provide insight into how these uncertainties interact and produce a range of completion estimates with associated levels of confidence.

These types of enhancements are called ‘Quantitative Risk Assessment’ or ‘Schedule Risk Analysis’.

Barbecana’s Full Monte™ addresses the issue of cost and schedule risk analysis by replacing single-point estimates with probability distributions and using Monte Carlo simulation to provide a much more realistic assessment of likely project outcomes.

We have strived to make the product powerful and flexible while retaining ease of use for all levels of schedule maturity. We hope you enjoy using the software as much as we have enjoyed creating it.

Comments, suggestions, and feedback are always welcome, so please feel free to contact us.

Thank you for choosing Full Monte to help improve your chance of delivering a successful project.

Tony Welsh, Founder and CEO
twelsh@barbecana.com
+1 281 971 9825
www.barbecana.com
Chapter 1: Introduction

1.1 Overview
Barbecana’s Full Monte enhances your project management capabilities by adding Monte Carlo simulation to your existing critical path method (CPM) project management system.

This is important because the critical path methodology used by tools such as Microsoft Project and Oracle Primavera, while an excellent technique for creating a model of the work to be performed to complete an objective, is inherently optimistic.

This means that any delivery/completion date calculated by such tools is typically unrealistic and has less than a 50% chance of being achievable. This is true even if your estimates are good and your execution performance is excellent. For further information on this inherent optimism please see the white paper “Merge Bias” available from the Barbecana web site here: https://barbecana.com/full-monte-white-paper.php

This guide will explain how Full Monte can quickly show the impact of uncertainty and merge bias on your schedule and help you make more realistic commitments.

Note: This guide was produced using Microsoft Project 2016 Professional although the sample project is provided in Microsoft Project 2007 format and all the techniques described can be used with any version of Microsoft Project Standard or Professional from 2007 through 2016.

1.2 Prerequisites
The guide assumes you have successfully installed Full Monte. If you have not yet installed the software, you can request a copy here: https://barbecana.com/full-monte-free-trial.php

Follow the instructions in the Installation Guide to install the software.

You will also need a sample schedule. You can use your own schedule but you may find it easier to follow this guide using the sample provided with Full Monte.

The Monte Carlo simulation engine in Full Monte will simulate the execution of your project many times using different sampled durations based on the information described in section 1.4. For these simulations to be meaningful it is important that the schedule:-

- Be Logic Driven – Dates for successors should be driven by logic from predecessors.
- Avoid Hard Constraints – Constraints such as Start No Later Than, Finish No Later Than, Finish On etc. will prevent the effect of delays to the schedule being modelled realistically. Even if the project has a firm required by date it is best to find out sooner rather than later that the date may be unrealistic. That gives us the opportunity to revise the schedule to improve our chances for on-time delivery.
- Avoid Manually Scheduled tasks – Manually scheduled tasks hide the effect of project logic. Full Monte will treat all Manually Scheduled tasks as Automatically Scheduled.
1.3 The Full Monte Demonstration Project

To open the Full Monte sample project, follow these instructions:

1. Start Microsoft Project and if necessary, dismiss the open Project screen by selecting a new blank project.
2. Select the Add-Ins menu (skip this step if you have Microsoft Project 2007).
3. From the Full Monte Administration menu select Open Demonstration Project as shown in figure 1.1.

![Figure 1.1](image)

4. The dialog displayed in figure 1.2 will be displayed.

![Figure 1.2](image)

5. Click Yes to confirm that you wish to create a copy of the demonstration project in your personal Barbecana Full Monte folder.
Note: You can reset the demonstration project to its original state at any time by choosing Open Demonstration Project and clicking Yes on the dialog. If you wish to continue working with changes made in an earlier session, then either click No on the dialog or simply open the project by selecting the Full Monte Demonstration project from the Microsoft Project recent files list.

6. Full Monte will confirm the file was copied as shown in figure 1.3.

![Figure 1.3](image)

7. The demonstration project is opened in Microsoft Project as shown in figure 1.4

![Figure 1.4](image)

The sample data provided in the Full Monte Demonstration project is designed to quickly demonstrate some of the basic techniques of schedule risk analysis using Full Monte.

The project comprises two major components, a hardware component and a software component. These components are to be developed independently but must be integrated prior to project completion. There are also some marketing activities that should be completed ready for project delivery.
The Microsoft Project Gantt chart has been configured to show the critical path driving project completion using red bars. The critical (longest) path runs through Initiate, the HW tasks, and then through Integration to Delivery. The blue bars represent tasks with slack (float) that are not directly driving project completion although they must obviously be completed before the project can be deemed complete.

The schedule is showing a delivery date of August 4th.

1.4 Schedule Risk Assessment / Schedule Risk Analysis

The purpose of a schedule risk assessment / schedule risk analysis (for our purposes the terms are interchangeable) is to understand the potential effect of uncertainty on the schedule enabling us to commit to a project completion (or interim milestone delivery) date that we have an acceptable probability of being able to achieve.

The acceptable probability of success can vary by organization/client but is usually more than 50% and often set at 80%. This means we want to commit to a delivery date that we have an 80% chance of being able to achieve. It is usually cost prohibitive to aim for probabilities higher than 80-90% and too risky to aim for probabilities below 50%.

Tasks in the schedule have a duration. This duration estimate is our best assessment of how long the task will take. It should not include any padding. Most tasks have some uncertainty regarding exactly how long they will ultimately take. Full Monte allows us to capture that uncertainty as a range of estimates for each task.

Note: We do not need to capture a range of estimates for every task, just those on, or near, the critical path and those tasks that are deemed higher risk.

To model estimate uncertainty we capture three separate estimates:

- Most Likely Duration - typically the duration from the schedule
- Optimistic (Best Case) Duration – the minimum duration we expect the task to take
- Pessimistic (Worst Case) Duration – the maximum duration we expect the task to take

These three estimates are often referred to as a three-point estimate.

For individual tasks, Full Monte allows the three estimates to be entered as either durations or percentages. Percentages estimates are calculated relative to the task duration.

Note: Full Monte actually uses the Remaining Duration from Microsoft Project. For a task that has not started this will be the same as the Duration entered for the task. Once a task has started (has an Actual Start and Percent Complete is greater than 0) the Remaining Duration will start to decrease so by using Remaining Duration Full Monte can automatically reduce the effect of remaining uncertainty.

For Example: If the schedule task duration is set to 4 weeks (20 working days) and the optimistic duration is set to 75% then this would represent a best-case duration of 3 weeks (75% of the 4-week task duration). Likewise, a pessimistic duration of 125% would represent a worst-case duration of 5 weeks (125% of the 4-week task duration).
Note: While individual task duration estimates can use either duration units or percentages (either 3-weeks or 75% for the optimistic duration example above), duration estimates on summary tasks and Full Monte templates can only use percentages. This is because this information can be applied to many tasks with different task durations where allowing a specific optimistic/pessimistic duration would not make sense.

Along with the three-point estimate, Full Monte allows us to specify a Duration Distribution Type. This is a probability distribution curve that allows us to weight the chance of sampled durations used in the simulation being closer to the elements of the 3-point duration estimate. Full Monte supports the following distribution/curve types.

- None
- Beta
- LogNormal
- Normal
- Triangular
- Uniform

The choice of distribution curve is somewhat subjective and has been shown to be less important than the three-point duration estimates themselves. The Triangular distribution is often used as a default because it allows the distribution to be skewed (the optimistic/pessimistic duration estimates are not symmetrical around the most likely estimate). The beta distribution can also be skewed but reduces the chance of sampled durations being close to the optimistic/pessimistic durations compared to the Triangular.

1.5 Three-Point Estimate Guidance

Rather than laboriously assign individual three-point estimates and duration distribution types to each task in the schedule, Full Monte allows uncertainty to be pre-defined using templates. Four templates are included as standard although these can be changed or expanded by the user. The default duration uncertainty templates are:

<table>
<thead>
<tr>
<th>Template Name</th>
<th>Distribution Type</th>
<th>Optimistic</th>
<th>Most Likely</th>
<th>Pessimistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>Normal</td>
<td>90%</td>
<td>100%</td>
<td>110%</td>
</tr>
<tr>
<td>Low Risk</td>
<td>Triangular</td>
<td>90%</td>
<td>100%</td>
<td>115%</td>
</tr>
<tr>
<td>Medium Risk</td>
<td>Triangular</td>
<td>95%</td>
<td>100%</td>
<td>125%</td>
</tr>
<tr>
<td>High Risk</td>
<td>Triangular</td>
<td>95%</td>
<td>110%</td>
<td>150%</td>
</tr>
</tbody>
</table>

The Default template is automatically applied to all projects opened for the first time in Full Monte. While a symmetrical distribution may seem unrealistic, it is useful for assessing the impact of merge bias and potential changes to the critical path. User can modify the parameters of the default template.

The other three standard templates (Low Risk, Medium Risk, High Risk) are just suggestions for duration uncertainty values. Ideally the user will use the Full Monte History view (see the Full Monte User Guide for more information) to analyze past projects to see how actual durations ultimately compared to the initial baseline duration estimates and use this to guide selection of uncertainty parameters.
Chapter 2: Getting Started with Full Monte

2.1 Opening a Project in Full Monte

With a project open in Microsoft Project, select the Add-Ins menu (skip this step if you are using Microsoft Project 2007) and then choose Full Monte from the menu.

Microsoft Project 2007

![Microsoft Project 2007](image)

Figure 2.1

Microsoft Project 2010, 2013, and 2016

![Microsoft Project 2010, 2013, and 2016](image)

Figure 2.2
2.2 Field Mappings

Full Monte stores user input data and results in Microsoft Project custom fields. The exact fields used by Full Monte can be specified by the user in the Field Mappings Dialog.

The initial, system default, mapping is shown in figure 2.3.

![Field Mapping Information](image)

Figure 2.2

The default field mappings shown in Figure 2.2 use custom Text fields 1 through 14. Customers may change these defaults. If all the required custom fields are empty in the new project then Full Monte will simply open the project and display the Task Edit dialog shown in Figure 2.7 however, many customer
projects will already have some custom data in one or more of these fields. If this is the case, Full Monte will warn the user that the default mappings conflict with existing data as shown in Figure 2.3.

![Warning Dialog](image)

Warning

This project is new to Full Monte and it looks as if one or more of the user fields which Full Monte is currently configured to use (Text1 on the task table) have data in them or are associated with a lookup table or formula. If you do not want this data overwritten, you should change the field mappings.

Would you like Full Monte to propose an alternative mapping that does not conflict with any existing data?

Click Yes if you would like Full Monte to propose an alternative mapping that ensures there will be no conflicts. You will still have the opportunity to edit the suggested mappings or to abort the whole process.

Click No if you would like to retain all existing mappings, but be aware that this may cause existing data to be overwritten, or even failure to update these fields if they are associated with a formula or lookup table.

Click Cancel to abort the whole process now.

In Figure 2.3, we can see that Full Monte is warning that there is existing customer data in Text1. The default field mapping (Figure 2.2) shows that Full Monte is configured to store ‘Full Monte Input Data’ in Text1.

The dialog offers the choice to select ‘Yes’ to have Full Monte propose an alternate mapping that does not conflict with Text1. The user may also choose ‘No’ which will cause Full Monte to continue with the default mapping which will result in the existing data in Text1 being deleted and replaced by Full Monte data. You may also click ‘Cancel’ to abort the field mapping process and return to Microsoft Project to review what data is stored in Text1 before committing to a course of action.

It is entirely possible that there will be multiple conflicts. They will all be listed in the dialog.
If you select ‘Yes’ then an alternate mapping will be displayed as shown in Figure 2.4.

In the example shown in Figure 2.4, Full Monte is now proposing to use Text15 for the Full Monte Input Data. Many customers reserve several custom fields for standard reporting purposes. In this case, you can manually modify the fields mappings to avoid using any reserved fields.

Note: The Full Monte field ‘Full Mont Input Data’ is the only field that must be mapped. All other fields can be set to (None) to reduce the number of custom text fields required. The only disadvantage of not mapping the standard fields is that they will not be available for reporting in Full Monte until a Risk Analysis has been performed in a new session. Basically, Full Monte uses these additional mapped fields to persist reporting data between sessions.
It is also possible to add additional Full Monte fields to the mapping as shown in Figure 2.5

In Figure 2.5 the custom fields used by Full Monte have been moved to start at Text15 (they are not required to be consecutive fields) and some additional Full Monte fields (Early Start Expected Value, Early Finish Expected Value, Early Start Percentile (80%), Early Finish Percentile (80%), Percent Critical, and Risk Path) have been added. These additional values can be used for custom reporting/review of Full Monte data in standard Microsoft Project views.

Clicking OK will apply the new mapping to the project.
Note: Check the ‘Make this the User Default’ option before clicking OK if you wish the proposed mapping to become the default for any new projects you open in Full Monte.

Full Monte will again verify that the new mappings are not using custom fields with existing data. If a conflict is found, then the message shown in Figure 2.6 is displayed.

![Overwrite Data?](image)

Field Text16 on the Task table has data in it. Do you want to overwrite this data?

Select Yes to continue applying your chosen mapping (which in this example will delete any existing data in Text16) or select No to be returned to the Field Mapping dialog to make further changes.

Note: Because of the checks Full Monte makes when applying fields mappings, this may take some time on very large projects. Please be patient.

Note: The selected field mappings are stored in the Task 0 (Project Summary row) text field used for Full Monte Input Data. Provided the user saves the project after using Full Monte, the mappings will be retained and used automatically the next time the project is opened.
The Full Monte Task Edit window will be displayed as shown in figure 2.7

![Figure 2.7](image)

The data displayed may vary if you have previously modified the columns displayed in the Task Edit window. Columns can be added, removed or resized by right-clicking on the column headings in the view.

Uncertainty distribution data can be edited directly in the spreadsheet. Both uncertainty data and more advanced features such as correlation and branching can be edited in the edit panel to the right of the view.

Note: The edit panel can be hidden/displayed using the chevron button at the top left of the panel (to the right of the search control on the menu bar).

2.3 Task Hierarchy

By default, Full Monte displays the task hierarchy (summary tasks and tasks) as entered in Microsoft Project. The hierarchy can be switched off from the View menu. You may wish to turn off the hierarchy view if you wish to sort/group tasks based on other criteria such as a custom Text or Outline code.

It is often the case that uncertainty data (distribution type, optimistic, most likely, and pessimistic durations) will be the same for similar tasks contained within a single summary task. Full Monte allows uncertainty data to be specified at the summary task level and inherited by all the indented child tasks below the summary.
When a project is first opened in Full Monte, the highest-level summary task (the project summary task) is assigned duration uncertainty data from the Full Monte Default template. The standard Default template is set to apply a Normal Distribution with an Optimistic Duration of 90%, Most Likely Duration of 100%, and a Pessimistic Duration of 110%. This information is then inherited by all the lower level tasks.

Note: The Full Monte Demonstration project has the top-level uncertainty set to a Triangular Distribution Type with Optimistic Duration set to 75%, Most Likely Duration set to 100%, and Pessimistic Duration set to 125%. This is to exaggerate the effect of uncertainty for the purposes of demonstration. The customer can modify the default template (Edit, Manage Templates) to define their own initial values for uncertainty.

Revised uncertainty data can be entered at any level of the hierarchy and this will be inherited by lower level tasks unless those lower level tasks have been explicitly assigned different uncertainty values.

Using the demonstration project as an example, the uncertainty information for the Summary Tasks ‘Hardware’ and ‘Software’ has been explicitly changed from the information inherited from the project summary task. This revised information is then applied to their respective lower level tasks.

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Full Monte 2017 Demonstration</td>
<td>14 wks</td>
<td>NA</td>
<td>Triangular</td>
</tr>
<tr>
<td>2</td>
<td>Initiate</td>
<td>1 wk</td>
<td>NA</td>
<td>Triangular</td>
</tr>
<tr>
<td>3</td>
<td>Development</td>
<td>12 wks</td>
<td>NA</td>
<td>Triangular</td>
</tr>
<tr>
<td>4</td>
<td>Hardware</td>
<td>12 wks</td>
<td>NA</td>
<td>Normal</td>
</tr>
<tr>
<td>5</td>
<td>HW Task 1</td>
<td>4 wks</td>
<td>NA</td>
<td>Normal</td>
</tr>
<tr>
<td>6</td>
<td>HW Task 2</td>
<td>4 wks</td>
<td>NA</td>
<td>Normal</td>
</tr>
<tr>
<td>7</td>
<td>HW Task 3</td>
<td>4 wks</td>
<td>NA</td>
<td>Normal</td>
</tr>
<tr>
<td>8</td>
<td>HW Task 4</td>
<td>4 wks</td>
<td>NA</td>
<td>Normal</td>
</tr>
<tr>
<td>9</td>
<td>HW Complete</td>
<td>0</td>
<td>NA</td>
<td>Normal</td>
</tr>
<tr>
<td>10</td>
<td>Software</td>
<td>54 days</td>
<td>NA</td>
<td>Triangular</td>
</tr>
<tr>
<td>11</td>
<td>SW Task 1</td>
<td>18 days</td>
<td>NA</td>
<td>Triangular</td>
</tr>
<tr>
<td>12</td>
<td>SW Task 2</td>
<td>18 days</td>
<td>NA</td>
<td>Triangular</td>
</tr>
<tr>
<td>13</td>
<td>SW Task 3</td>
<td>18 days</td>
<td>NA</td>
<td>Triangular</td>
</tr>
<tr>
<td>14</td>
<td>SW Task 4</td>
<td>18 days</td>
<td>NA</td>
<td>Triangular</td>
</tr>
<tr>
<td>15</td>
<td>Sw Complete</td>
<td>0</td>
<td>NA</td>
<td>Triangular</td>
</tr>
<tr>
<td>16</td>
<td>Integration</td>
<td>1 wk</td>
<td>NA</td>
<td>Triangular</td>
</tr>
<tr>
<td>17</td>
<td>Integration</td>
<td>1 wk</td>
<td>NA</td>
<td>Triangular</td>
</tr>
</tbody>
</table>

Figure 2.8

Now, when a new project is opened in Full Monte, the initial settings for the project summary task will be Triangular 95%, 100%, 125% and all lower level tasks will initially inherit these settings.

If you do not wish to have any uncertainty data automatically applied, change the default template distribution type to None.
2.4 Entering Duration Uncertainty data

As mentioned in section 1.4, the task three point estimates can be either entered using duration or percentages. Percentage durations are calculated based on the original task duration.

The example shown in Figure 2.9 shows two 4 week tasks, one with the uncertainty data specified as a percentage of the original duration and the other using durations.

<table>
<thead>
<tr>
<th></th>
<th>Percentage</th>
<th>4 wks</th>
<th>NA</th>
<th>Triangular</th>
<th>75%</th>
<th>100%</th>
<th>125%</th>
<th>100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Duration</td>
<td>4 wks</td>
<td>NA</td>
<td>Triangular</td>
<td>3 wk</td>
<td>4 wk</td>
<td>5 wk</td>
<td>100%</td>
</tr>
</tbody>
</table>

Figure 2.9

The uncertainty information can be entered either directly into the spreadsheet or by using the edit panel. The edit panel shows the duration uncertainty data in both formats as shown in figure 2.10.

Figure 2.10

2.5 Confidence Interval

The Confidence Interval allows you to model the effect of caveats applied to the supplied distribution information.

For example, if a subject matter export (SME) states they are 80% confident the duration will fall between 18 and 24 days then setting the confidence interval to 80% would take this into account.

Note: Be aware that this is effectively saying the SME expects 20% of results to be outside of these bounds. Since most distribution types decrease the probability of samples being selected close to the extreme optimistic/pessimistic ends of the distribution even an 80% confidence interval can greatly increase the possible range of sampled values.
Figure 2.11 shows an example of applying an 80% confidence interval to a triangular distribution.

We can see that having the system model 20% of results as occurring outside the estimated range (18 to 24 days) increases the range of sampled durations from 6 days (18 to 24) to 10.79 (15.9 to 26.69) days. The effect would be even more pronounced with distribution types with long thin tails (Beta, LogNormal). It is therefore recommended that confidence interval is left at 100% and the estimator encouraged to provide as realistic best case/worst case estimates as possible without a caveat.

Note: If you are using distribution types with long thin tails (for example the Beta distribution), then slightly decreasing the confidence interval below 100% can be a way of ensuring that some samples are included from close to the extreme optimistic/pessimistic durations at the expense of the risk that some samples may be taken from outside of the specified range.
Chapter 3: Performing a Risk Analysis and Viewing Results

3.1 Running a Risk Analysis (Monte Carlo Simulation)

For this example, we will use the Full Monte Demonstration Project described in section 1.3. Open the project in Microsoft Project and then launch Full Monte as described in section 2.1.

The project has already been configured for Full Monte so the main Full Monte Task Edit view will open as shown in Figure 3.1.

The uncertainty information for all tasks is being inherited from the top-level project summary task (highlighted in yellow). The inherited information has set all tasks to have duration uncertainty information using a Triangular distribution with an Optimistic duration of 75% (75% of the remaining duration loaded from Microsoft Project), Most Likely duration of 100% (100% of the remaining duration loaded from Microsoft Project) and a Pessimistic duration of 125% (125% of the remaining duration loaded from Microsoft Project).

Click the ‘Risk Analysis’ button on the Full Monte menu bar. The dialog shown in Figure 3.2 is displayed.
On a new project the number of simulations will default to 1000. Running a larger number of simulations improves the quality of the information provided by Full Monte. We recommend experimenting to find the largest number of simulations that you can perform in a reasonable amount of time on your project. The demonstration project is set to run 10,000 simulations which will just a few seconds on such a small project.

The simulations use pseudo random numbers to select a sample duration for each task in each simulation. Selecting the ‘Use Fixed Seed’ option will cause Full Monte to use the same random numbers in subsequent invocations of Risk Analysis which will cause the calculated results to be the same provided nothing else has changed (no changes to task input data). We recommend leaving this unchecked.

Since we are trying to study the effect of uncertainty on the schedule it is best allow the analysis to show how delays to predecessors can affect successors. Hard Constraint Dates such as ‘Start No Later Than’, ‘Finish No Later Than’, ‘Finish On’, etc. can prevent tasks moving into the future driven by logic. If the schedule has hard constraint dates applied to tasks you can instruct Full Monte to ignore them for the purposes of the simulation by checking ‘Ignore Hard Constraints’.

For very large projects (many thousands of tasks), it may be beneficial to decrease the time for each simulation to increase the total number of simulations that can be performed in a reasonable amount of time. The option ‘Fast Backward Pass’ reduces the time for each simulation by not calculating Late date or Slack(Float) values. Since most risk reporting is based on Early Dates (Early Start Expected/Early Finish Expected) or percentiles of these values (e.g. Early Finish Percentile 80%) the absence of Late and Slack/Float information is not usually a concern.

Use the ‘Preferred Date/Duration Histogram Interval’ to request a specific scale for histograms produced by the simulation. The default ‘Let Full Monte Decide’ will scale each histogram per the range of data in the chart. Forcing all charts, for example, to ‘Day’ may make it easier to compare charts from various tasks. If the selected scale cannot be realistically applied to a specific chart (for example the user selected ‘Hours’ but the data in the chart spans several months) then Full Monte will use an appropriate scale.
The ‘Schedule Sensitivity Target’ and ‘Cost Sensitivity Target’ allow the user to select intermediate milestones as the focus for sensitivity and risk path analysis. This can be useful on long programs where the next major milestone is more important than the ultimate project completion.

Click OK to start the Monte Carlo simulation process.

Note: Most analysis will take less than 1 minute. If the progress bar is indicating an unacceptable length of time press Escape or click Cancel to abort the simulation. Reduce the number of simulations and try again.

When the simulation is complete, Full Monte may display the message shown in Figure 3.3.

![Log Messages](image)

Figure 3.3

This is a warning that Full Monte encountered data that may cause anomalous results. Click yes to see the issues. An example is shown in Figure 3.4.

![Log Messages](image)

Figure 3.4

In the example log message shown in Figure 2.14 Full Monte has highlighted that task ID 7 (HW Task 3) has been Manually Scheduled in Microsoft Project. Full Monte will treat such tasks as Auto Scheduled for the purposes of the simulation. Other issues reported may include out of sequence progress (a successor marked as started before its predecessor is complete), and summary tasks marked as milestones. In most cases the information is a warning although we recommend resolving issues such as manually scheduled tasks since these invalidate the results calculated by Microsoft Project.

After the simulation completes without log issues, or you close the log messages if displayed, the Task Edit dialog will update to show results. The screenshot shown in Figure 3.5 is the default configuration. The user may add/remove columns as described in the User Guide.
In the example shown in Figure 3.5 the ‘Early Finish Histogram’ column has updated to show there are graphs available to view. If a task finish has no uncertainty, then the graph button will be replaced by the deterministic date the task will finish.

3.2 Viewing Results

Clicking on the Graph button for the top-level task (ID 0) will produce a chart like that shown in Figure 3.6. The results may not be identical to the example shown since the simulations are based on random samples which will typically be slightly different for each simulation.
The chart title information includes the mean finish date for the task, the standard deviation (a measure of the range of uncertainty for the result), the deterministic date calculated by Microsoft Project and the chance of achieving that deterministic date based on the uncertainty data. In this example, we see the software is predicting only a 35% chance of achieving the project finish date of 8/4. Since we applied symmetrical uncertainty to all tasks (±25%) we might have expected a 50% chance of achieving the date suggested by Microsoft Project. Unfortunately, once we take into account uncertainty and the impact of Merge Bias, we can see that the date suggested by Microsoft Project is unrealistic and not likely to be achievable.

The histogram bars show the chance of a task finishing on a specific date (based on the X-Axis date scale). Hover the mouse over a specific bar to see the relevant data. For example, in Figure 2.16 we can see that there is a 6.1% chance the project will finish on 8/7/17.

We are usually not all that interested on the probability of finishing on a specific day. Of more interest is the chance of finishing by a specific date. Hovering the mouse over the S-Curve will show data like the example in figure 3.7.
In the example in Figure 3.7 we can see that we have an 80% chance of completing the project by 8/11/17. This information can also be displayed on the Y-Axis by selecting ‘Configure...’ from the chart menu and checking the option to ‘Mark Corresponding X-values’ as shown in Figure 3.8.
The result is a chart like that shown in Figure 3.9.
This makes it easy to see the dates for specific levels of confidence on the right Y-axis.

Clicking the ‘Graphs’ button on the Full Monte menu will display a view containing more available charts as shown in Figure 3.10.
The columns include in the view can be modified by the user (right click a column heading for options). The optional pane to the right of the view displays detail information for the task selected in the spreadsheet.

See the User Guide for further information on configuring views in Full Monte.
Chapter 4: Using Templates to apply Task Uncertainty

4.1 Defining Template Uncertainty

We learned in section 1.5 that Full Monte allows uncertainty templates to be defined. This is useful because it is unusual and time consuming to derive detailed Three-Point estimates for every task in a schedule. It is more likely that most tasks will have similar uncertainty, perhaps defined by discipline, with detailed three-point assessments reserved for identified high risk tasks.

Templates are defined from the main Task Edit window from the ‘Edit, Manage Templates’ menu option. This displays the dialog shown in Figure 4.1.

![Figure 4.1](image)

Full details regarding configuring templates is available in the user Guide. Click the New button to create a new template or edit existing templates and click Save to apply the changes.

We can apply templates in two ways:

1. By selecting tasks in the Task Edit window and applying a template.
2. By applying templates based on a custom field in Microsoft Project.

4.2 Applying Template Uncertainty by Selecting Tasks

Using the Demonstration Project, we will first remove the initial generic uncertainty and update the project with more realistic uncertainty data using templates.

To remove the generic uncertainty simply change the top-level project summary task Duration Distribution Type to (None). Press Tab or click away from the cell to apply the change. The task Edit window should look as shown in Figure 4.2.
If some tasks still show duration uncertainty data, this means they are not inheriting from the top level. This can be resolved by selecting one or more of the affected tasks, right clicking on a selected task, and choose ‘Inherit Distribution’ as shown in Figure 4.3.
After applying the Inherit Distribution option the windows should again appear as per Figure 4.2.

For our example, we will set all the Hardware tasks duration uncertainty using the ‘Low Risk’ template and the Software Tasks duration uncertainty using the ‘High Risk’ template.

Select the four HW Tasks (ID’s 5-8) using normal Windows techniques like Click, Shift-Click, or Ctrl-Click and then Right-Click on a selected task and choose Apply Template, Low Risk as shown in Figure 4.4.
Figure 4.4

After selecting the ‘Low Risk’ template the dialog shown in Figure 4.5 is displayed.

Figure 4.5

The Apply Template Confirmation dialog confirms what is about to happen. In the example shown in Figure 4.5 it confirms 4 tasks will be updated. None of the tasks are summary tasks so no lower level tasks will be affected. For more information regarding the settings please see the User Guide. Click OK to execute the template application. The Task Edit window will refresh as shown in Figure 4.6.
The Task Edit dialog shown in Figure 2.26 confirms that the expected ‘Low Risk’ duration uncertainty information has been applied to the selected tasks from the template.

Repeat the process for the SW Tasks using the ‘High Risk’ Template. The result is shown in Figure 4.7.
4.3 Applying Template Uncertainty using Custom Fields

While the technique shown in section 4.2 (applying a template to selected tasks) is quick and easy where there are relatively few groups of tasks using just a few templates, another technique that works well with many templates and facilitates group discussion regarding appropriate templates to use, is applying templates based on Microsoft Project custom fields.

Using the Full Monte Demonstration project insert a column in the Microsoft Project task columns to display field Text20 (Assessment 1). This is a custom text field where we can store user information. In the example shown in Figure 4.8 we can see we have populated the HW Tasks and SW Tasks with the text ‘Low Risk’ and ‘High Risk’. The user text in the column must match exactly the spelling of valid Template names defined in Full Monte.

One way to ensure the text entered into the custom field is spelled correctly is to specify a Lookup table for the relevant field as shown in Figure 4.9.
Note: The value descriptions reflect the fact that some customers prefer to assign duration uncertainty based on their confidence in the original task duration estimates. High Risk = Low Confidence in the estimate.

User can then simply choose an appropriate template from the drop-down list as shown in Figure 4.10.
Once the required tasks have been updated in Microsoft Project, launch Full Monte.

Ensure that all tasks have their Duration Distribution Type set to (None) as previously shown in Figure 4.2.

Select all tasks (using either Edit, Select All, Ctrl+A, or Click Shift-Click) and then right-click on a selected task and choose Apply Template, From Text Field, Assessment 1 (Text20) as shown in Figure 4.11.

Full Monte will confirm what will happen as shown in Figure 4.12.
In this case, we can see that 8 tasks will have their duration uncertainty data updated. Click OK to apply the templates. The result will be displayed as shown in Figure 4.13.

Figure 4.12

In this case, we can see that 8 tasks will have their duration uncertainty data updated. Click OK to apply the templates. The result will be displayed as shown in Figure 4.13.

Figure 4.13

Note: If the custom field was blank (empty) for a specific task in Microsoft Project then no action is performed on that task when you apply templates from that field. This allows you to update some tasks in directly in Full Monte and other can be maintained in Microsoft Project. If you wish to allow updates to the custom field to clear existing uncertainty in Full Monte, then you can define a null template as shown in Figure 4.14 and add that to the Lookup table in Project.
We can now proceed to run the Risk Analysis on our customized uncertainty data.

4.4 Running an Analysis based on Template Data

Click the Risk Analysis button on the Full Monte menu and select the options shown in Figure 4.15.

When ready click OK.

The task Edit window will update as shown in Figure 4.16.
Note: The task Initiate (ID 2) has no graph button. As mentioned earlier this is because there is no uncertainty associated with the finish of that task because the Duration Distribution Type for that task is (None) and because it has no predecessors with uncertainty.

Clicking the Graph button on the top-level summary task will display something like the chart in Figure 4.17.
Figure 4.17

Compare this to the chart shown in Figure 2.16. The chance of completing the project by the deterministic date of 8/4 has dropped from 35% to just 1%! Even though we removed uncertainty from some tasks, the more realistic assessments applied to the 8 main tasks has shown a higher level of uncertainty in the overall project.

Based on this chart, a more realistic date for project completion would be 8/17 (with an 80% chance of being successful).

But suppose committing to 8/17 is not acceptable for contractual or technical reasons. How does this help us? The good news is we know **now** that we have a problem. Our chance of successful project delivery by the original date (8/4) based on the current schedule is very small. We need to modify the schedule to improve our chances. Changes could include:

- Reducing risk/uncertainty by further review of the estimates
- Reducing task durations perhaps by applying more resources
- Changing the schedule logic to give high risk tasks more slack/float.

But where to start... See chapter 5 for the answer!
Chapter 5: Analyzing Results.

While the Histograms and S-Curves shown earlier (for example Figure 2.37) provide us with information about the effect of duration uncertainty and the dates by which we might complete our project at an acceptable level of confidence, they do not help us understand what was driving the result. This is where Sensitivity and Risk Path analysis can help us.

5.1 Sensitivity Analysis

As its name implies, Sensitivity Analysis can help us understand the relative sensitivity of our desired outcome to the uncertainty on each task in the schedule. In other words, this will show us the relative contribution of each task to the uncertainty of the outcome.

After having performed the Risk Analysis, choose View, Open Named View, Tornado (Schedule with Index). The report will look something like that shown in Figure 5.1.

![Figure 5.1](image)

Although the critical path identified by Microsoft Project ran through the HW tasks we can clearly see that the SW Tasks are having more impact on the outcome. Although the SW tasks original had slack/float the higher risk applied to those tasks changes the critical path some 81% of the time.

The Percent Critical column shows how often each task was on the critical path duration the simulations. The Sensitivity Index shows the relative importance of each task to the uncertainty in the outcome. The Green/Red Gantt chart shows how the uncertainty affected the outcome relative to the Mean project completion date. The Green bar shows that when, for example, task 14 (HW Task 4) finished early then the project tended to finish early. Likewise, if task 14 finished late then it tended to push out the project completion.

Since tasks 14 and 11 were not only having the most impact on the outcome, but also tended to make the project finish earlier when their duration was set to the optimistic (best case) duration they will be good candidates for helping compress the schedule and reduce uncertainty.

As mentioned above there are three typical approaches:

- Reducing risk/uncertainty by further review of the estimates
- Reducing task durations perhaps by applying more resources
- Changing the schedule logic to give high risk tasks more slack/float.
As mentioned in section 3.1, it is possible to specify the desired Sensitivity Target for both Schedule and Cost when performing the risk analysis. This can be important on larger schedules where interim delivery milestones are important.

In the example shown in Figure 5.2 the Schedule Sensitivity Target has been changed to milestone ID 9 (HW Complete). Perhaps this represents a client deliverable or stage payment.

After running the risk analysis, the task histogram data will be unchanged but the Tornado (Schedule with Index) will be quite different as shown in Figure 5.3

Now the Tornado Sensitivity chart only shows tasks creating uncertainty in the HW Complete milestone.

Note: While the ‘Percent Critical’ column still shows the percentage of the time these tasks were on the critical path to project completion, the ‘Percent Critical (Sensitivity)’ column shows the percentage of the time the tasks were on the critical path to the sensitivity target.

The one disadvantage of the Tornado Sensitivity chart is that it only shows tasks creating uncertainty in the outcome. When we updated the task uncertainty data, some tasks (for example task 2 ‘Initiate’) had no uncertainty defined and therefore do not appear on the Tornado chart despite being a critical predecessor to task 5 ‘HW task 1’. Risk Path Analysis can solve that problem.

5.2 Risk Path Analysis

While the Tornado sensitivity chart is an invaluable tool to highlight tasks creating the most uncertainty and the best opportunities for schedule compression, it does not show the complete picture so it can become difficult to understand how the tasks are affecting the outcome.
To solve this problem, Full Monte calculates a Risk Path index which identifies the various possible critical paths to the desired milestone or project completion based upon their probability of affecting the outcome (Percentage Critical).

The Risk Path can be inserted as a column in any Full Monte View. Right-Click on a column heading and choose Insert Column Before (or after), Other Full Monte Columns, Risk Path as shown in Figure 5.4.

![Figure 5.4](image)

The result is shown in Figure 5.5.
In Figure 5.5 we can see that Initiate, SW Task 1, SW task 3, SW Task 4, and Integration have been identified as the primary critical path to project delivery (Risk Path is set to 1).

This will be easier to visualize in a Gantt chart.

From the View menu choose Open Named View and then select (New). When the new view opens turn off the ‘Observe Hierarchy’ option from the view menu.

Add the Risk Path column.

Then from the View menu, select Filter and then New Filter. Complete the details as shown in Figure 5.6.
Click OK and the filter will be applied to the view as shown in Figure 5.7.

<table>
<thead>
<tr>
<th>ID</th>
<th>Task Name</th>
<th>Risk Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>Delivery</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>HW Complete</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>HW Task 1</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>HW Task 2</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>HW Task 3</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>HW Task 4</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Initiate</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>Integration</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>SW Complete</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>SW Task 1</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>SW Task 2</td>
<td>2</td>
</tr>
<tr>
<td>13</td>
<td>SW Task 3</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>SW Task 4</td>
<td>1</td>
</tr>
</tbody>
</table>

We can now add a Gantt chart by right-clicking the Risk Path column heading and choosing New Bar chart Column as shown in Figure 5.8.
Configure the Bar chart column as shown in Figure 5.9.

Click OK to draw the bars and then click the Risk Path column heading to sort the tasks into ascending order of Risk Path as shown in Figure 5.10.
The five tasks on the primary driving path to delivery are shown on Risk Path 1. A minor variation where SW Task 2 drives the project is shown on Path 2 and so on.

Unfortunately, Full Monte does not yet feature logic links or data driven colors for Gantt bars but this is something Microsoft project does well. So, could we draw this chart using Microsoft Project?

The answer is yes thanks to the field mappings that were described in section 2.2. We can save data calculated by Full Monte right back into Microsoft project custom fields.

Close the new view (choosing to save the view). Enter a name and view description.

Now close Full Monte. You will be prompted twice to save information. The first prompt (shown in Figure 5.11) asks if you wish to save Task Data. Choose Yes to save any inputs you made to task uncertainty information.

Note: if you choose No, any data updates you made in Full Monte will be lost and you will not have an opportunity to save the Risk Analysis results.

You will then be prompted to save the results of Risk Analysis as shown in Figure 5.12.
Choosing Yes will save the results of the analysis in several fields and will also update any additional custom fields that were specified in the Field Mappings dialog.

5.3 Custom Views in Microsoft Project

The Full Monte demonstration project has been preconfigured with several custom views based on Risk Analysis data calculated and saved by Full Monte.

After the demonstration project was analyzed and the results saved in section 3.2 the Microsoft Project Gantt chart will update to show a risk adjusted scheduled based on 80% confidence (aka 80th Percentile or P80 dates) as shown in Figure 5.13.

![Figure 5.13](image)

The original bars based on the Early Start/Early Finish calculated by Microsoft Project are the Red/Blue bars and underneath each of these is a color-coded bar showing the 80% confidence dates. The Bar Styles are defined as shown in Figure 5.14.
Note: Flag fields have been used to control when the various color bars are displayed based on the criticality of the tasks in the risk analysis. The criticality information was saved to Number1 by Full Monte. See an example in Figure 5.15.
We can use the same techniques to draw a nice Risk Path Gantt chart. In our Field Mapping’s Full Monte save the risk path to custom field Number2.

We can use some more Flag fields to control the color of the bars based on the Risk Path number as shown in Figure 5.16.
The resultant Gantt view in Microsoft project is shown in Figure 5.17.

Note: The Gantt chart has been grouped by Risk Path as shown in Figure 5.18.
Group Definition in 'Full Monte Demonstration'

<table>
<thead>
<tr>
<th>Name:</th>
<th>FM Risk Path</th>
<th>(\checkmark) Show in menu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group By</td>
<td>Field Name</td>
<td>Field Type</td>
</tr>
<tr>
<td>Risk Path</td>
<td>Risk Path</td>
<td>Task</td>
</tr>
<tr>
<td>Then By</td>
<td>Then By</td>
<td></td>
</tr>
<tr>
<td>Then By</td>
<td>Then By</td>
<td></td>
</tr>
</tbody>
</table>

- **Group assignments, not tasks**
- **Group by setting for Risk Path**
 - Font: Segoe UI 10 pt Bold
 - Cell background: [Dropdown]
 - Pattern: [Dropdown]

- [Define Group Intervals...]
- \(\checkmark\) Show summary tasks
- \(\checkmark\) Maintain hierarchy

[Figure 5.18]
Summary

This ‘getting Started’ guide is a quick introduction to using Full Monte to satisfy the requirement for project Schedule Risk Assessments.

It has attempted to show various ways the tool can be used to suit different customer needs.

There are many more features in the product compared to the few shown here. Please consult the Full Monte Installation Guide for advanced topics on software configuration and the Full Monte User Guide for details on other product features such as modelling discreet threats/opportunities with Task Existence and Probabilistic Branching, risk mitigation with Conditional Branching, shared influencing factors with Correlation and diagnostic tools to help explain results.

Thank you for using our software.

Barbecana.